Is Cannabis a Cure-all?

You might have seen in the media lately a lot of coverage about the use of cannabis to treat epilepsy and other conditions. It all started with the case of a young boy with severe epilepsy who was using cannabis oil to manage his seizures, with apparently great effect. Until, that is, his mother was unable to bring his treatment into the UK and his medication was seized at the airport.

These stories raise three questions:

  • What does UK law regulate in the case of medications based on cannabis
  • What is a cannabis oil?
  • Can cannabis treat any medical condition?

UK Law

In the UK, cannabis is a Class B drug – you aren’t allowed to possess or supply it and doing so can result in jail-time. This is a regulation under the Misuse of Drugs Act 1971, however cannabis is also regulated by The Misuse of Drugs Regulations 2001 which control the therapeutic use of drugs. Under this legislation, cannabis is regulated as a Schedule 1 drug which means it is not available for medical purposes and possession and supply are prohibited unless the Home Office approves.

cannabis plant seedlings

Cannabis: the sum of its parts

Cannabis refers to a group of plants which produce compounds called cannabinoids. Cannabis plants contain 113 different cannabinoids – so what exactly are we talking about when we talk about cannabis oil?

The two important cannabinoids to consider are tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is the main part of cannabis that gives its psychoactive effects. It’s the compound that will make you feel ‘high’ if you smoke marijuana although this response is mediated by other cannabinoids too. It also stimulates release of the hunger hormone, ghrelin, which explains why people have an increased appetite when they take cannabis. It does this by binding to a specific receptor on the surface of cells in the brain.

CBD is non-psychotropic and it acts in a very different way to THC. But it might also enhance THC activity by increasing the number of receptors available for THC to bind to. It might also increase the levels of those natural endocannabinoids in the body.

In the UK, CBD is legal which means cannabis oils containing only CBD are legally available whereas THC is not legal.

four brown glass unlabelled bottles containing oil

Can cannabis treat disease?

In the UK, there are already two cannabinoid based treatments licensed for prescription. Nabilone is used to treat nausea and vomiting in people undergoing chemotherapy. There are other conditions it has been indicated for including IBS, fibromyalgia, chronic pain and parkinson’s disease however in the UK it is only permitted to help treat the side effects of chemotherapy.

The second cannabinoid based treatment available in the UK is Sativex which is used to treat the symptoms of multiple sclerosis including neuropathic pain and spasticity. Sativex is a cannabis extract which contains both THC and CBD.

Cannabis for epilepsy

When it comes to epilepsy – there is considerable evidence that THC can control convulsions through regulation of neuronal excitability and inflammation. But because it can make you high – it’s not an ideal avenue for therapeutic exploration.

Research into CBD for treating epilepsy is relatively new but initially promising at least for certain types of epilepsy and there is a drug awaiting FDA approval which can treat Lennox-Gastaut syndrome and Dravet syndrome, two severe forms of epilepsy. But this might not be sufficient in all cases – some patients may require different mixtures of THC and CBD to see an effect.

Cannabis for cancer

Cannabis can be useful in managing cancer-associated side effects in patients. It can act as both a pain reliever and a way to reduce nausea and enhance appetite. But there is early research that it might also kill cancer cells and stop them growing. In these cases researchers have looked at highly purified THC and CBD. Some trials have shown that combining chemotherapy with cannabis might have some promise. However, we have insufficient evidence to support its use as a cancer treatment either due to small study sizes or the research predominantly taking place in cells in the lab which is just not a good representation of what would happen in humans. We don’t know which types of cannabinoids are most useful, what doses are needed, what types of cancer respond, how to take them effectively and whether they should or shouldn’t be combined with other treatments.

Cannabis research

If cannabis is so promising, why don’t we do more research on it to bring it to clinical trial? Cannabis is a Schedule 1 regulated drug, it can only be used in research with Home Office approval. Schedule 1 drugs are so classified because they are not deemed to have medical usefulness. But researchers like Professor David Nutt are concerned that the medical usefulness of cannabis cannot be proven if research is prohibited.

Importantly, the recent media interest in cannabis use as a medical treatment has been useful in encouraging a UK government review on the therapeutic value of medications based on cannabis. This review will be undertaken by the Advisory Council for the Misuse of Drugs and may lead to a change in the legal status of cannabis and cannabinoids with regards to their use in medicine.

A woman standing at a laboratory bench facing away from the camera and wearing a lab coat

Alternative medicine

In the meantime, it is important to remember that while cannabis holds some promise as a potential therapy for many conditions, it is crucial to always follow professional medical advice when considering medical treatments. The research supporting cannabis use is limited and there are many questions about safety and efficacy that remain unanswered. For many conditions that cannabis might be useful for, we already have good medical treatments that can be used before considering an as-yet, unproven treatment. Cannabis oils are poorly regulated and might have wildly variable levels of cannabinoids and may even contain ingredients that are harmful. It is never advisable to buy medical treatments online or take medical advice from someone other than a qualified medical professional.

 

I talked more about this on my podcast, Skeptics with a K – on this episode. You can follow me on Twitter @AliceEmmaLouise for more.

Is sunscreen bad for you?

The weather has been glorious here in the UK, which means out come all the warnings to apply sunscreen copiously and frequently. It also means out come all the warnings that chemicals in sunscreen are dangerous.

But what does the science say?

Types of sunscreen

There are two main types of sunscreen: chemical or mineral. Chemical sunscreens contain chemical UV filters such as octinoxate and oxybenzone and some have retinyl palmitate added to them. Mineral sunscreens contain mineral compounds like titanium dioxide and/or zinc oxide. Chemical sunscreens absorb UV light and convert it whereas mineral sunscreens are reflective and act as a physical barrier. This means mineral sunscreens are often thicker and have a less pleasant texture on the skin and they leave your skin a little ghostly.

image of a person's knee with white sunscreen and a hearth drawn into the sunscreen

Chemical sunscreen – The warnings

When we see warnings about the dangers of sunscreen it tends to be related to three things:

  • Does chemical sunscreen cause skin problems such as contact dermatitis?
  • Does chemical sunscreen cause cancer?
  • Does chemical sunscreen cause birth defects?

So what are these concerns based on?

Contact dermatitis

Some people have skin reactions to chemical sunscreens – this occurs in less 1% of users and can be a response to fragrances, preservatives or the UV absorber itself. Sensitivity can develop after using a particular formulation for a long time. If you have a sensitive reaction to sunscreen you can try switching formulations, or you can switch to mineral sunscreen which is less likely to cause a reaction. And of course, see your doctor if you’re worried.

Causing cancer

Some studies suggest that oxybenzone can cause hormonal changes in cells grown in the lab. These hormonal changes have been confirmed in animals like mice but have not been reliably shown to occur in humans. Hormone changes can cause cancer so some people believe that oxybenzone can cause cancer. To date this has not been shown to be the case. Oxybenzone has not been shown to cause the DNA mutations needed to cause cancer and hormonal changes are not always linked to cancer. This evidence is insufficient to prove any link between oxybenzone and cancer.

an image of a small white mouse standing on a white background

Retinyl palmitate is sometimes found in sunscreen. Retinyl palmitate is derived from retinol or vitamin A and it acts as an antioxidant. Retinol generates reactive oxygen species (ROS) when exposed to UV radiation and ROS are able to damage DNA. This is the basis for the concerns that Retinol will cause cancer. Studies in mice did not show that retinol combined with UV radiation causes cancer. There is no data published in humans to suggest that retinyl palmitate causes cancer.

A recent meta-analysis confirmed that there is no evidence supporting an increase in cancer risk caused by sunscreen use.

Causing birth defects

There is evidence that medicinal retinol pills can cause birth defects however this has not been shown to be the case with topical retinol application. Still, as a precautionary method it is advisable that pregnant women do not use a sunscreen containing retinols for the duration of their pregnancy.

The context

It is important to note that while there may be some evidence suggesting some level of risk associated with chemical sunscreen risk – this must be taken within the wider context.

Skin cancer

There are two main types of skin cancer – melanoma and non-melanoma skin cancer. Non-melanoma skin cancer includes basal cell carcinoma and squamous cell carcinoma and is largely treatable if it’s caught early. Non-melanoma cancers are the most common type of cancer. Melanoma skin cancer is an invasive form of cancer that is the 5th most common and at late stages is usually considered incurable. At early stages it is highly treatable but this form of cancer can progress rapidly and requires early intervention.  Both types of skin cancer are on the rise in the UK and this is linked to increasing sun and sunbed exposure. UV light exposure accounts for 86% of all melanoma cases, in the UK. Studies in Australia have shown a reduced rate of melanoma with regular sunscreen use.

A white sunhat with a black ribbon on a table with a pair of blue lensed sunglasses

Does sunscreen prevent cancer?

There is evidence that regular sunscreen use reduces pre-cancerous conditions and prevents skin cancer. However, the research into the efficacy of sunscreen is highly variable. This is partly because people are prone to using sunscreen in order to extend their time in the sun and misunderstand the most effective ways to use sunscreen. Chemical sunscreens should be applied to the skin 30 minutes before going into the sun and should be reapplied every two hours or more often if you are perspiring or swimming. Even waterproof sunscreen will be removed by towelling down after a swim. Sunscreen does prevent sunburn however research shows that people who only rely on sunscreen to protect themselves from UV damage burn more often than people who also practice sun avoidance habits. A person who has suffered sunburn more than twice in their life is twice as likely to get melanoma.

So what should you do?

While there is evidence that chemical sunscreens can have some detrimental effects on the body – the evidence is overwhelmingly clear that over-exposure to UV light causes skin cancer. Not only that, the research shows that the benefits of using sunscreen far outweigh the risks. Unless you are completely avoiding any UV light exposure then in my opinion, using sunscreen is a risk worth taking. In addition to wearing sunscreen and reapplying regularly, you should aim to avoid direct sunlight during the hottest hours of the day or wear clothing that covers your skin. And don’t forget, you might not burn through glass but you can still get UV skin damage through glass!

Extra reading:

https://www.skincancer.org/prevention/sun-protection/sunscreen/sunscreens-safe-and-effective

https://www.consumerreports.org/cro/sunscreens/buying-guide/index.htm

https://www.popsci.com/sunscreen-harmful#page-2

 

Kitchen cupboard “cures” – number one: turmeric

Wouldn’t it be great if we could cure all our ills with ingredients we can find in our kitchen cupboard? Plenty of people claim that it can be done and with the popularity of ‘natural’ medicines it’s not just your Nana who recommends it because that’s what her Nana taught her.

Kitchen cupboard remedies have become so mainstream that they become potentially dangerous when recommended for life-threatening diseases such as cancer. In fact, just a few months ago the Express asked “Can turmeric really cure cancer? Woman says benefits of golden spice ‘cured’ her disease”.

the express
Headline from the Express: “Can turmeric really cure cancer? Woman say benefits of golden spice ‘cured’ her disease”

But sometimes we wonder, if so many people believe it, maybe there’s really something in it?

In this series I will cover kitchen cupboard “cures” to investigate the claims made, and what the science really says. The series begins with the tasty Indian spice turmeric.

Turmeric

Turmeric is often reported as some sort of wonder spice. People who promote its use claim turmeric is anti-inflammatory, reduces cholesterol, treats diabetes, prevents Alzheimer’s disease and both prevents and cures cancer.

glass jar of orange coloured ground turmeric on a tea towel with a wooden spoon on the worktop next to it and turmeric on the spoon and counter

But actually, while this seems like a bizarre old wives’ tale, there is evidence supporting some of the claims for turmeric. The active ingredient in turmeric is curcumin or diferuloyl methane. Experiments in the lab show that curcumin alters the expression of genes in cells and some of these genes are related to specific pathways. For example, curcumin alters the expression of proteins related to inflammation in rat liver cells in a petri-dish and also alters the production of cholesterol in cells. Curcumin supplementation might also help manage some of the side effects of diabetes but only in conjunction with standard therapy. There is even some early evidence from mice with Alzheimer’s disease that curcumin can slow cognitive decline.

However, the science is also quite complicated. When it comes to cancer there is some evidence that curcumin can slow the growth of cancer cells in the lab but plenty of things slow cancer growth in the lab and never go on to prove useful therapies. Having said that, some clinical trials have shown that curcumin might one day prove useful as an adjunct to some cancer treatments in some cancer patients with some types of cancer.

The Express article above did discuss a case of a woman with myeloma, a type of blood cancer. This article was based on a single case published in British Medical Journal Reports in which a patient who had been on conventional treatment for many years suffered a relapse and was advised that there was nothing else doctors could do to help treat her cancer. The patient decided to take 8g chemical curcumin in tablet form per day in the hope it would treat her cancer. Her cancer has subsequently stabilised. This is a potentially interesting case – however it is only one single case that has been observed. Subsequent studies have not been done to investigate why this patient stabilised and there is insufficient evidence that it was the turmeric that was responsible. In fact, there are rare cases in which cancers such as myeloma can go into spontaneous remission without treatment and doctors believe this might be due to the patient’s own immune system targeting the cancer cells.

Important caveats

It would seem that the early research is fairly promising, however there are some very important caveats to remember here. So far, these studies are largely done in cells in a petri-dish or animals like mice or rats. We are not yet able to translate the findings to humans and we’re a long way from finding useful therapies using this compound.

Importantly, the studies use chemical curcumin rather than dietary turmeric and usually have specific measured doses. If curcumin becomes a useful therapy, the dose will change between different diseases and different patients. There is no evidence supporting the use of turmeric in isolation to treat disease. In all studies it is used as a supplement to standard therapy.

Clear capsules with orange powder inside

Medical treatments should always be managed by a medical professional. Any ‘herbal’ remedy has the risk of interacting with conventional drugs. In the case of curcumin research has shown that the chemical can inhibit some cancer treatments so it is important we understand the role curcumin plays in reacting with other medications before using this to treat patients.

It is because of this risk of interaction with other medications that it is really important patients taking any herbal remedy supplements speak to their doctors about whether these supplements might harm themselves or the efficacy of their treatments. It is important to note that many supplements are not fully regulated and therefore may contain ingredients that cause harm. For example, some curcumin supplements have been shown to contain anti-inflammatory drugs which can cause liver damage if taken in excess.

Summary: while there is some early evidence the active ingredient of turmeric might one day prove a useful supplement to conventional therapy we’re a long way from this being clinically useful. We need much more research to confirm the efficacy of curcumin and to establish which compounds work best and at which doses.

Next week I’ll be writing about Rosemary. If you have any specific requests for a Kitchen Cupboard “Cure” for me to cover, please leave a comment or send me a tweet @AliceEmmaLouise.

For more information on turmeric and cancer you can see CRUK’s review.

Sources:

 

 

 

Skincare, anti-aging (and cancer)

The world of skincare is not a place for the faint-hearted. It is such a dizzying mix of advice and recommendations, advertising and ‘science’ that any wander through this world leaves you feeling like you are not doing enough for your health or appearance. The only way to make yourself feel better, it would seem, is to spend sometimes hundreds of pounds on products you will use religiously for a few weeks before you end up exhausted by all the time you’re spending slathering on potions, oils and creams.

Why do we do it?

There are a range of reasons we feel we have to invest time, money and energy into our skin. One of the main reasons seems to be to maintain a youthful appearance for longer. Anti-aging is a huge part of skincare marketing and people (women especially) are targeted from an early age to start protecting their skin from the effects of aging.

The science of aging

There are two types of aging – intrinsic and extrinsic.

Intrinsic aging is the type that is genetically accounted for. It happens naturally pretty much no matter what you do. This is the kind of aging that leads to changes in skin elasticity. This type of aging is also called chronological aging and is the one you cannot really do much to change.  The characteristics of intrinsic aging include smooth, unblemished skin with a loss of elasticity, fine wrinkles and paling of the skin. The skin gets thinner and the small blood vessels in the skin reduce in quantity.

In addition to the natural course of aging, we also have extrinsic aging. This is the one our behaviour has a say in. By far, the two biggest factors which cause extrinsic aging are smoking and exposure to UV light.

Smoking reduces the elasticity of skin and reduces collagen levels in the skin. This means the skin gets hardened, slack and rough. We have evidence from multiple studies over a number of years showing that smokers have increased wrinkling compared to non-smokers. The evidence is consistent and overwhelming – smoking tobacco increases skin aging.

Photoaging

Exposure to UV light from the sun is thought to account for up to 90% of visible skin aging. UV light causes an increased level of specific proteins in the skin called enzymes. The enzymes that are increased in skin exposed to sunlight are responsible for degrading important connective tissue. After repeated exposure the skin starts to sag and to form wrinkles. Sunlight exposure increases the production of reactive oxygen species (ROS) and free radicals in the skin. ROS and free radicals damage the DNA which increases your risk of skin cancer, but they also increase the levels of those degrading enzymes even more. In addition to all of that, UV radiation interferes with the immune system and may even prevent cell death in sun-exposed skin which can also contribute to an increased risk of skin cancer. The characteristics of photoaged skin include nodular, leathery, blotchy skin with coarse wrinkles and furrows. The skin has irregular pigmentation and obvious marking on the skin and the elasticity is severely damaged. Blood vessels become dilated and there is pronounced inflammation.

What works?

It should be clear, now, that the two most useful ways to prevent visible skin aging are to minimise intake of cigarette smoke and to minimise skin exposure to damaging UV rays.

Sunscreen

To protect your skin from UV damage, applying a daily sunscreen with a high factor SPF and high-quality UVA protection (4 stars or above). SPF protects your skin from burning and from the damage associated with that but it does not protect against UVA radiation. UVA damage is invisible, although it does cause darkening of pigmentation, and is very deeply penetrating. You need a sunscreen that protects against both UVA and UVB damage.

image of a person's knee with white sunscreen and a hearth drawn into the sunscreen

Topical Retinoids

While most skincare products have very little evidence supporting their use in preventing or reversing the signs of aging, there is one active ingredient that does seem to help.

Retinoids are a family of chemicals which include retinol (vitamin A) and similar compounds. The potential of retinoids in treating aging was discovered in the 1980s when scientists treating photoaged mice noticed repair of the skin and reduction in wrinkling. We now know that retinoids encourage cell growth and can reverse some of the effects seen in photoaged skin and you can buy skincare products which have retinoids in them. There are two downsides to using retinoids on your skin – firstly, retinoids can cause some sensitivity making the skin red and sore which means some people cannot use it at all and most people need to build up their usage from a low dose (0.1%) used infrequently (1-2 times per week). Retinoids can also make your skin more sensitive to UV damage. This means if you are using retinoid skin products you need to be extra careful about staying out of the sun.

Prevention is better than cure

Ultimately, the best thing you can do for your skin to prevent visible aging is to protect it from harmful damage caused by smoking or sun damage. Of course, if you enjoy the relaxation of using different products on your skin, then go right ahead. But the best way to protect your skin is to use a decent sunscreen and to refrain from smoking.

You will also be doing wonders for your risk of lung and skin cancer!

Sources:

Read more about skin cancer here:

http://www.cancerresearchuk.org/about-cancer/skin-cancer/about-skin-cancer 

 

 

 

Report: Attendance at a Pseudoscience Lecture on Gerson Therapy

On Tuesday the 15th of August at a Holiday Inn conference room in Liverpool two of my colleagues from the Merseyside Skeptics Society and I attended a talk entitled “Censored for Curing Cancer”. Also in attendance were around 70 members of the public – some of whom were cancer patients.

The talk had been promoted as a tell-all in spite of censoring and was open to any member of the public through Eventbright ticketing for £20 in advance or for a cost of £30 on the door. The speaker, Patrick Vickers runs the Northern Baja Gerson Centre clinic in Mexico where, as Patrick described it, “we’re treating advance terminal diseases. Not just cancer but virtually every single disease we’re successfully treating, and we’re doing it with Gerson Therapy”.

I heard about the talk through social media, the poster was shared around by alternative medicine proponents with promises of an “epic story of Hope and Truth” about an “effective alternative therapy for advanced degenerative diseases including “terminal” cancer”. This is quite a bold – and scientifically testable – claim about a therapy that, despite the therapy having been around since the 1930s has no sound scientific evidence to support its efficacy.

Lvpool3
Image taken from the Northern Baja Gerson Centre website – a photo taken of the room during the talk in Liverpool on August 15th 2017.

What is Gerson Therapy?

Gerson Therapy is an alternative therapy pioneered by Max Gerson in the early 1900s based on an intense regimen of 13 organic juices, taken precisely on the hour, every hour, and following a strict protocol and a minimum of 5 daily coffee enemas. In addition to this demanding regime, patients must take a huge list of supplements including doses so high of potassium that (again quoting Vickers) “if a medical doctor learned how much potassium we give patients every day they’d be frantic” due to the risk of cardiac arrest.

The Gerson diet is specifically devoid of any salt other than that found in the juices and the patients must take castor oil – four tablespoons every other day in the first month, with a tapered reduction over the first months – in order to ‘detox’ from supposed toxins. The patients also take supplements of pancreatic enzymes and stomach enzymes as well as crude liver extract and niacin.

If all of that weren’t bad enough, Vickers’ clinic in Mexico offers a range of “adjuvant” therapies including rectal ozone, hydrotherapy in which they supplement heated water with hydrogen peroxide (bleach) and laetrile (made from apricot kernels and containing cyanide). All of this first takes place at the clinic during a minimum 2 week stay but Vickers’ goes to some length to stress that most people decide to stay for 3 weeks. This costs patients $5800 (over £4000) per week plus travel to Mexico. Not to mention the hundreds of pounds they will spend every month to continue the protocol for up to three years (or indefinitely) after they have left the clinic.

It is important to categorically state that there is no good evidence that the Gerson Therapy will cure cancer. However one foundation of our medical system is the right to informed consent – it protects the right of any individual patient of the age of consent to make a decision on the treatment path they follow; it protects the rights of any patient to follow alternative therapies should they so choose. But the most important element of that right is the informed part. The content of Patrick Vickers talk was fundamentally against adequate information provided to patients.

Encouraging a distrust in medical professionals

Even before beginning his talk, Vickers seeded distrust in medical professionals: he prefaced his 90 minute lecture with:

“I promise you, by the time you leave here today you will know more about cancer and reversing advanced degenerative disease than any medical doctor on the planet”.

To say this is hubristic is an understatement: a trained oncologist in the UK must undergo many years of training before they earn their specialism and must keep on top of the most up to date research in order to treat their patients to the standards expected by the NHS. This is not something that can be taught during a three hour public presentation. Even my own expertise in cancer research has taken five years to cultivate and I don’t have any responsibility to individual patients.

Compared to his later comments, Patrick’s insinuation that he can convey a complete understanding of one of the our most complicated range of diseases in the space of a single lecture might actually be one his more relatively mild transgressions – elsewhere in his presentation he advised a breast cancer patient to come off her Tamoxifen, told a set of parents that they should not take part in the immunotherapy trial they’d been offered, and told a blood cancer patient that she needed to be weaned off any medication she was taking if she were to undertake Gerson Therapy because it is “incompatible”. All of this “advice” was given with absolutely no understanding of the circumstances of those patient’s cases, since they were simply patients asking questions in the Q&A session after the talk, and the extensive patient history a medical professional with a duty of care would have needed before offering any advice was not be forthcoming in that setting.

Local media coverage

There was (at least) one patient in the room who might have been well known to Pat Vickers, however. Sean Walsh, a singer from Liverpool is a patient of the Northern Baja Gerson Centre clinic who has recently returned to Merseyside following his stay in Mexico. I first became aware of Sean when his story was hailed in the local media as an uplifting success because he survived longer than the 8 months his team of haematologists had predicted despite, eschewing their advice for his treatment and instead undergoing Gerson Therapy. The Liverpool Echo published a story about Sean headlined “Man with cancer beats 8 month prognosis despite shunning hospital treatment”.

At the time, I and my colleagues at the Merseyside Skeptics Society, along with a dozen cancer researchers from the University of Liverpool and North West Cancer Research, responded with a letter to the paper asking that they acknowledge their responsibility to not publish potentially dangerous information as though it were true despite the lack of evidence. The letter was published in the print edition of the Liverpool Echo.

LiverpoolEcho-Letters-20170227

What’s the harm?

According to Vickers’ seminar, should a patient decide to attend the Northern Baja Gerson Centre they would be taken off any conventional treatment they are already taking and weaned off any medication. He told the audience that it takes 3-6 months before a patient is ready to go on the full protocol due to an apparent risk of “chemotoxicity”, and then a further 6-12 months for the tumour to be “destroyed”.

He also recommend that patients on the treatment ought to have no scans in the first 6 months – a staggeringly dangerous message when a patient is stopping all conventional therapy and will have absolutely no indication of what the potentially lethal effect on their cancer during this crucial time period.

In my opinion, the danger of this lecture is threefold. Firstly, Vickers is directly claiming that Gerson Therapy will cure cancer. He says so categorically, and frequently. Not only is this dangerously untrue, but it almost certainly breaks the 1939 Cancer Act, which prohibits an “offer to treat any person for cancer, or to prescribe any remedy therefor, or to give any advice in connection with the treatment thereof”. The Act serves to protect the basis of informed consent fundamental to our medical system.

In addition to this, Vickers claimed that the media, the government and all of the medical professionals are lying about cancer treatment, stating, “It is important to know who is lying to you, how they’re lying to you, why they’re lying to you and when they’re lying to you”. He is promoting a potentially deadly distrust in the scientific consensus on effective cancer treatment, and what’s worse is that he makes these claims at a time when cancer treatment success has more than doubled in the UK in the last forty years. Scientific progress is huge in this area and promoting this distrust could have disastrous consequences for patients.

Thirdly, he is telling patients that the “only” way to cure cancer is the Gerson Therapy, and the only way to do this successfully is to spend thousands of pounds on a clinic stay, organic produce, juicing equipment, coffee enemas and supplements. Not only are some of these treatments dangerous in themselves, but the crippling costs can make the last few months of a patient’s life intolerably difficult, and the complicated and specific regime can make those last few months of a life unbearably miserable. To subject patients to that, on top of insisting that they have a three week stay in Vickers’ expensive clinic, often away from their family at a crucial time in their disease progression, is astonishingly irresponsible.

As a cancer researcher, I find it galling that this lecture can be hosted in a UK hotel with very little criticism. My concern is that information like this is at the very best, unethical and at the very worst leads to the unnecessary death of cancer patients in the region.